Ecophysiology of Freshwater Verrucomicrobia Inferred from Metagenome-Assembled Genomes

نویسندگان

  • Shaomei He
  • Sarah L R Stevens
  • Leong-Keat Chan
  • Stefan Bertilsson
  • Tijana Glavina Del Rio
  • Susannah G Tringe
  • Rex R Malmstrom
  • Katherine D McMahon
چکیده

Microbes are critical in carbon and nutrient cycling in freshwater ecosystems. Members of the Verrucomicrobia are ubiquitous in such systems, and yet their roles and ecophysiology are not well understood. In this study, we recovered 19 Verrucomicrobia draft genomes by sequencing 184 time-series metagenomes from a eutrophic lake and a humic bog that differ in carbon source and nutrient availabilities. These genomes span four of the seven previously defined Verrucomicrobia subdivisions and greatly expand knowledge of the genomic diversity of freshwater Verrucomicrobia. Genome analysis revealed their potential role as (poly)saccharide degraders in freshwater, uncovered interesting genomic features for this lifestyle, and suggested their adaptation to nutrient availabilities in their environments. Verrucomicrobia populations differ significantly between the two lakes in glycoside hydrolase gene abundance and functional profiles, reflecting the autochthonous and terrestrially derived allochthonous carbon sources of the two ecosystems, respectively. Interestingly, a number of genomes recovered from the bog contained gene clusters that potentially encode a novel porin-multiheme cytochrome c complex and might be involved in extracellular electron transfer in the anoxic humus-rich environment. Notably, most epilimnion genomes have large numbers of so-called "Planctomycete-specific" cytochrome c-encoding genes, which exhibited distribution patterns nearly opposite to those seen with glycoside hydrolase genes, probably associated with the different levels of environmental oxygen availability and carbohydrate complexity between lakes/layers. Overall, the recovered genomes represent a major step toward understanding the role, ecophysiology, and distribution of Verrucomicrobia in freshwater. IMPORTANCE Freshwater Verrucomicrobia spp. are cosmopolitan in lakes and rivers, and yet their roles and ecophysiology are not well understood, as cultured freshwater Verrucomicrobia spp. are restricted to one subdivision of this phylum. Here, we greatly expanded the known genomic diversity of this freshwater lineage by recovering 19 Verrucomicrobia draft genomes from 184 metagenomes collected from a eutrophic lake and a humic bog across multiple years. Most of these genomes represent the first freshwater representatives of several Verrucomicrobia subdivisions. Genomic analysis revealed Verrucomicrobia to be potential (poly)saccharide degraders and suggested their adaptation to carbon sources of different origins in the two contrasting ecosystems. We identified putative extracellular electron transfer genes and so-called "Planctomycete-specific" cytochrome c-encoding genes and identified their distinct distribution patterns between the lakes/layers. Overall, our analysis greatly advances the understanding of the function, ecophysiology, and distribution of freshwater Verrucomicrobia, while highlighting their potential role in freshwater carbon cycling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reconstruction of Diverse Verrucomicrobial Genomes from Metagenome Datasets of Freshwater Reservoirs

The phylum Verrucomicrobia contains freshwater representatives which remain poorly studied at the genomic, taxonomic, and ecological levels. In this work we present eighteen new reconstructed verrucomicrobial genomes from two freshwater reservoirs located close to each other (Tous and Amadorio, Spain). These metagenome-assembled genomes (MAGs) display a remarkable taxonomic diversity inside the...

متن کامل

Draft Genome Sequence of the Planktic Cyanobacterium Tychonema bourrellyi, Isolated from Alpine Lentic Freshwater

We describe here the draft genome sequence of the cyanobacterium Tychonema bourrellyi, assembled from a metagenome of a nonaxenic culture. The strain (FEM_GT703) was isolated from a freshwater sample taken from Lake Garda, Italy. The draft genome sequence represents the first assembled T. bourrellyi strain.

متن کامل

Erratum for Orr et al., “Draft Genome Sequences of Two Unclassified Bacteria, Sphingomonas sp. Strains IBVSS1 and IBVSS2, Isolated from Environmental Samples”

We report here the draft genome sequences of Sphingomonas sp. IBVSS1 and IBVSS2, two bacteria assembled from the metagenomes of surface samples from freshwater lakes. The genomes are >99% complete and may represent new species within the Sphingomonas genus, indicating a larger diversity than currently identified.

متن کامل

Erratum for Orr et al., “Draft Genome Sequences of Two Unclassified Chitinophagaceae Bacteria, IBVUCB1 and IBVUCB2, Isolated from Environmental Samples”

We report here the draft genome sequences of two Chitinophagaceae bacteria, IBVUCB1 and IBVUCB2, assembled from metagenomes of surface samples from freshwater lakes. The genomes are >99% complete and may represent new genera within the Chitinophagaceae family, indicating a larger diversity than currently identified.

متن کامل

Draft Genome Sequences of Two Unclassified Bacteria, Hydrogenophaga sp. Strains IBVHS1 and IBVHS2, Isolated from Environmental Samples

We report here the draft genome sequences of Hydrogenophaga sp. strains IBVHS1 and IBVHS2, two bacteria assembled from the metagenomes of surface samples from freshwater lakes. The genomes are >95% complete and may represent new species within the Hydrogenophaga genus, indicating a larger diversity than currently identified.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2017